Kieker 1.10

kieker.tools.tslib.forecast.ses
Class SESRForecaster

java.lang.Object
  extended by kieker.tools.tslib.forecast.AbstractForecaster<Double>
      extended by kieker.tools.tslib.forecast.AbstractRForecaster
          extended by kieker.tools.tslib.forecast.ses.SESRForecaster
All Implemented Interfaces:
IForecaster<Double>

public class SESRForecaster
extends AbstractRForecaster

This is one of the forecasters used in the research paper on Self-adaptive workload classification and forecasting for proactive resource provisioning (http://dx.doi.org/10.1002/cpe.3224), authored by Herbst et al.

Since:
1.10
Author:
Nikolas Herbst Generalization of MA by using weights according to the exponential function to give higher weight to more recent values. 1st step: estimation of parameters for weights/exp. function 2nd step: calculation of weighted averages as point forecast

Constructor Summary
SESRForecaster(ITimeSeries<Double> historyTimeseries)
           
SESRForecaster(ITimeSeries<Double> historyTimeseries, int confidenceLevel)
           
 
Method Summary
 
Methods inherited from class kieker.tools.tslib.forecast.AbstractRForecaster
forecast, removeNullValues
 
Methods inherited from class kieker.tools.tslib.forecast.AbstractForecaster
getConfidenceLevel, getTsOriginal
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

SESRForecaster

public SESRForecaster(ITimeSeries<Double> historyTimeseries)
Parameters:
historyTimeseries - timeseries used by forecating algo

SESRForecaster

public SESRForecaster(ITimeSeries<Double> historyTimeseries,
                      int confidenceLevel)
Parameters:
historyTimeseries - timeseries used by forecating algo
confidenceLevel - confidenceLevel

Kieker 1.10

Copyright 2014 Kieker Project, http://kieker-monitoring.net