kieker.tools.tslib.forecast.ses
Class SESRForecaster
java.lang.Object
kieker.tools.tslib.forecast.AbstractForecaster<Double>
kieker.tools.tslib.forecast.AbstractRForecaster
kieker.tools.tslib.forecast.ses.SESRForecaster
- All Implemented Interfaces:
- IForecaster<Double>
public class SESRForecaster
- extends AbstractRForecaster
This is one of the forecasters used in the research
paper on Self-adaptive workload classification and forecasting for
proactive resource provisioning
(http://dx.doi.org/10.1002/cpe.3224), authored by Herbst et al.
- Since:
- 1.10
- Author:
- Nikolas Herbst
Generalization of MA by using weights according to the exponential function
to give higher weight to more recent values.
1st step: estimation of parameters for weights/exp. function
2nd step: calculation of weighted averages as point forecast
SESRForecaster
public SESRForecaster(ITimeSeries<Double> historyTimeseries)
- Parameters:
historyTimeseries
- timeseries used by forecating algo
SESRForecaster
public SESRForecaster(ITimeSeries<Double> historyTimeseries,
int confidenceLevel)
- Parameters:
historyTimeseries
- timeseries used by forecating algoconfidenceLevel
- confidenceLevel
Copyright 2014 Kieker Project, http://kieker-monitoring.net>