kieker.tools.tslib.forecast.cs
Class CSForecaster
java.lang.Object
kieker.tools.tslib.forecast.AbstractForecaster<Double>
kieker.tools.tslib.forecast.AbstractRForecaster
kieker.tools.tslib.forecast.cs.CSForecaster
- All Implemented Interfaces:
- IForecaster<Double>
public class CSForecaster
- extends AbstractRForecaster
This is one of the forecasters used in the research
paper on Self-adaptive workload classification and forecasting for
proactive resource provisioning
(http://dx.doi.org/10.1002/cpe.3224), authored by Herbst et al.
- Since:
- 1.10
- Author:
- Nikolas Herbst
Cubic splines are fitted to the univariate time series data to obtain
a trend estimate and linear forecast function.
Prediction intervals are constructed by use of a likelihood approach for
estimation of smoothing parameters. The cubic splines method can be mapped to
an ARIMA 022 stochastic process model with a restricted parameter space.
Overhead below 100ms for less than 30 values (more values do not sig. improve accuracy)
CSForecaster
public CSForecaster(ITimeSeries<Double> historyTimeseries)
- Parameters:
historyTimeseries
- timeseries used by forecating algo
CSForecaster
public CSForecaster(ITimeSeries<Double> historyTimeseries,
int confidenceLevel)
- Parameters:
historyTimeseries
- timeseries used by forecating algoconfidenceLevel
- value of confidence
Copyright 2014 Kieker Project, http://kieker-monitoring.net>