kieker.tools.tslib.forecast.arima
Class ARIMAForecaster
java.lang.Object
kieker.tools.tslib.forecast.AbstractForecaster<Double>
kieker.tools.tslib.forecast.AbstractRForecaster
kieker.tools.tslib.forecast.arima.ARIMAForecaster
- All Implemented Interfaces:
- IForecaster<Double>
public class ARIMAForecaster
- extends AbstractRForecaster
An R-based time series forecaster, auto-arima model selection.
This is one of the forecasters used in the research
paper on Self-adaptive workload classification and forecasting for
proactive resource provisioning
(http://dx.doi.org/10.1002/cpe.3224), authored by Herbst et al.
- Since:
- 1.10
- Author:
- Andre van Hoorn, Nikolas Herbst
The automated ARIMA model selection process of the R forecasting package starts
with a complex estimation of an appropriate ARIMA(p, d, q)(P, D, Q)m model by using
unit-root tests and an information criterions (like the AIC) in combination with
a step-wise procedure for traversing a relevant model space.
The selected ARIMA model is then fitted to the data to provide point forecasts
and confidence intervals.
ARIMAForecaster
public ARIMAForecaster(ITimeSeries<Double> historyTimeseries)
- Parameters:
historyTimeseries
- timeseries used by forecating algo
ARIMAForecaster
public ARIMAForecaster(ITimeSeries<Double> historyTimeseries,
int confidenceLevel)
- Parameters:
historyTimeseries
- timeseries used by forecating algoconfidenceLevel
- value of confidence
Copyright 2014 Kieker Project, http://kieker-monitoring.net>